SETS, Notation

SETS, Notation
Photo by Roman Mager / Unsplash

In ordinary life

SET diagram in reality, made from Gemini and design into diagram by Lucidchart
SET diagram in reality, made from Gemini and design into diagram by Lucidchart

In mathematical

A intersection B (mutual value between A and B
A intersection B (mutual value between A and B
A Union B (takes all value from A and B
A Union B (takes all value from A and B

Notation

Notation Description Example
$x \in A$ The object $x$ is an element of the set $A$. If $A = \{1, 2, 3\}$, $2 \in A$.
$x \notin A$ The object $x$ is not an element of the set $A$. If $A = \{1, 2, 3\}$, $4 \notin A$.
$\emptyset$ The empty set, that is, the set with no elements at all. $\emptyset = \{\}$
$A \subseteq B$ The set $A$ is contained in $B$, that’s all, every element of $A$ is also in $B$. If $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then $A \subseteq B$.
$A \subset B$ $A$ is a proper subset of $B$, meaning $A$ is contained in $B$, but they are not equal. If $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then $A \subset B$.
$A \cup B$ The union of the sets $A$ and $B$: $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$. If $A = \{1, 2\}$ and $B = \{2, 3\}$, then $A \cup B = \{1, 2, 3\}$.
$A \cap B$ The intersection of the sets $A$ and $B$: $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$. If $A = \{1, 2\}$ and $B = \{2, 3\}$, then $A \cap B = \{2\}$.
$A \setminus B$ The difference of the sets $A$ and $B$: $A \setminus B = \{x \mid x \in A \text{ but } x \notin B\}$ If $A = \{1, 2\}$ and $B = \{2, 3\}$, then $A \setminus B = \{1\}$.

Exercise: Set Operations

Let $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$. Find the following:

  1. $$ A \cup B $$
  2. $$ A \cap B $$
  3. $$ A \setminus B $$
  4. $$ B \setminus A $$
  5. Is $A \subseteq B$?
  6. Is $B \subset A$?

Solutions:

  1. Union:

$$ A \cup B = \{x \mid x \in A \text{ or } x \in B\} $$ $$ A \cup B = \{1, 2, 3, 4, 5, 6\} $$

  1. Intersection:

$$ A \cap B = \{x \mid x \in A \text{ and } x \in B\} $$ $$ A \cap B = \{3, 4\} $$

  1. Difference (A minus B):

$$ A \setminus B = \{x \mid x \in A \text{ and } x \notin B\} $$ $$ A \setminus B = \{1, 2\} $$

  1. Difference (B minus A):

$$ B \setminus A = \{x \mid x \in B \text{ and } x \notin A\} $$ $$ B \setminus A = \{5, 6\} $$

  1. Subset Check ($A \subseteq B$):

$$ A \subseteq B \iff \forall x (x \in A \implies x \in B) $$

Since $A$ contains elements not in $B$, $A \not\subseteq B$.

  1. Subset Check ($B \subset A$):

$$ B \subset A \iff \forall x (x \in B \implies x \in A) $$

Since $B$ contains elements not in $A$, $B \not\subset A$.

Caution

∀: for all

∃: there exists

Another example

  • The set of all integers $x$ such that $x > 5$ and $x < 3$ is the empty set: $\{x \in \mathbb{Z} \mid x > 5 \text{ and } x < 3\} = \emptyset$
  • The set of all vowels in the word "rhythm" is the empty set: $\{x \mid x \text{ is a vowel in "rhythm"}\} = \emptyset$

SETS

Set Description
The natural numbers, $\mathbb{N}$ The positive numbers {1, 2, 3, 4, ...}.
The integers, $\mathbb{Z}$ All positive and negative numbers {..., -3, -2, -1, 0, 1, 2, 3, ...}. Keep in mind that $\mathbb{N} \subset \mathbb{Z}$.
The rational numbers, $\mathbb{Q}$ These are fractions, including $\frac{1}{2}$, $-\frac{5}{4}$, 2 (since $2 = \frac{2}{1}$). We are allowed to write every integer as a fraction, $\mathbb{Z} \subset \mathbb{Q}$.
The real numbers, $\mathbb{R}$ This set has all of the rational numbers, same as other digits that are unable to represented as fractions, such as $\sqrt{2}$ and $\pi$. The most effective way to think of it is to form a number line where you fill in all the gaps among rational numbers. We got this $\mathbb{Q} \subset \mathbb{R}$.
The complex numbers, $\mathbb{C}$ An extension of the real digits to incorporate $\sqrt{-1}$ and same digits.

Example: Considering that

  • $\forall x \in \mathbb{Q}, 4x \in \mathbb{Z}$ $\Rightarrow$ Ex: $x = \frac{1}{3}$ $\Rightarrow$ $4x = \frac{4}{3} \notin \mathbb{Z}$ $\Rightarrow$ False
  • $\exists x \in \mathbb{Q}, 4x \in \mathbb{Z}$ $\Rightarrow$ Ex: $x = \frac{1}{2}$ $\Rightarrow$ $4x = 2 \in \mathbb{Z}$ $\Rightarrow$ true
  • $\forall x \in \mathbb{Z}, \frac{x}{3} \in \mathbb{Z}$ $\Rightarrow$ False
  • $\exists x \in \mathbb{Z}, \frac{x}{3} \in \mathbb{Z}$ $\Rightarrow$ True

Sets of numbers

Interval notation

{ x ∈ R | 1 < x < 2} ⇒ (1,2)

{ x ∈ R | 1 <= x < 2} ⇒ [1,2)

{ x ∈ R | 1 <= x <= 2} ⇒ [1,2]

{ x ∈ R | x >= 1} ⇒ [1,∞)

Example 1:

{ x ∈ R | 0 < x <= 1} ⋂ {z ∈ R| 3z ∈ Z}

(0,1] ⋂ {……,$\frac{-1}{3}$, 0, $\frac{1}{3}$, 1, ….} = {$\frac{1}{3}$, 1}

Example 2:

{1/2, 1, 3/2, 2} ⋂ Q Z

Q = {…, $\frac{-1}{2}$, 0, $\frac{1}{2}$, 1, $\frac{3}{2}$, 2,…}

Q Z = {…, $\frac{-1}{2}$, $\frac{1}{2}$, $\frac{3}{2}$,…}

==> {1/2, 1, 3/2, 2} ⋂ {…, $\frac{-1}{2}$, $\frac{1}{2}$, $\frac{3}{2}$,…} = {$\frac{1}{2}$, $\frac{3}{2}$}

Example 3:

A = [0,4), B = {x ∈ Z | $\frac{x}{3}$ ∈ Z}, C = {kπ | k ∈ Z}

Calculate (A ∩ B) C

B = {…-6, -3, 0, 3, 6,….}

C = {....,-2π, -1π, 0, π, 2π,....}

A ∩ B = [0,4) ∩ {…-6, -3, 0, 3, 6,….} = {0, 3}

(A ∩ B) C = {0, 3} {....,-2π, -1π, 0, π, 2π,....} = {3}