Propositional Logic, Truth tables, and Logical Equivalences

This made from latex equations, so please go to website to see it phrase easier. Or try to download the extension called TeX for Gmail:

TOC
Table of Contents

Use truth tables to show which one is valid

P ∧ (Q ∨ R) ⇔ (P ∧ Q) ∨ (P ∧ R) (Distribution of ∧)

P Q R (Q ∨ R) (P ∧ Q) (P ∧ R) P ∧ (Q ∨ R) (P ∧ Q) ∨ (P ∧ R)
T T T T T T T T
T F F F F F F F
F T F T F F F F
F F T T F F F F
T F F F F F F F
F F T T F F F F
F T F T F F F F
F F F F F F F F

¬(P ∧ Q) ⇔ ¬P ∨ ¬Q (de Morgan's Law)

P Q ¬P ¬Q (P ∧ Q) ¬(P ∧ Q) ¬P ∨ ¬Q
T T F F T F F
T F F T F T T
F T T F F T T
F F T T F T T

¬(P ∨ Q) ⇔ ¬P ∧ ¬Q (de Morgan's Law)

P Q ¬P ¬Q (P ∨ Q) ¬(P ∨ Q) ¬P ∧ ¬Q
T T F F T F F
T F F T T F F
F T T F T F F
F F T T F T T

(P ⇒ Q) ⇔ (¬Q ⇒ ¬P) (Contraposition)

P Q ¬P ¬Q (P ⇒ Q) (¬Q ⇒ ¬P)
T T F F T T
T F F T F F
F T T F T T
F F T T T T

Decide whether each of the following sentences is valid, unsatisfiable, or neither.

Verify your decisions using truth tables or the equivalence rules from the lecture.

a. Smoke ⇒ Smoke

Smoke Smoke
T T
F T

b. Smoke ⇒ Fire

Smoke Fire Smoke ⇒ Fire
T T T
F T T
T F F
F F T

c. (Smoke ⇒ Fire) ⇒ (¬Smoke ⇒ ¬Fire)

Smoke Fire ¬Smoke ¬Fire (Smoke ⇒ Fire) (¬Smoke ⇒ ¬Fire) (Smoke ⇒ Fire) ⇒ (¬Smoke ⇒ ¬Fire)
T T F F T T T
F T T F T F F
T F F T F T T
F F T T T T T

d. Smoke ∨ Fire ∨ ¬Fire

Smoke Fire ¬Fire Smoke ∨ Fire ∨ ¬Fire
T T F T
F T F T
T F T T
F F T T

e. ((Smoke ∧ Heat) ⇒ Fire) ⇔ ((Smoke ⇒ Fire) ∨ (Heat ⇒ Fire))

Smoke Heat Fire (Smoke ∧ Heat) (Smoke ⇒ Fire) (Heat ⇒ Fire) ((Smoke ∧ Heat) ⇒ Fire) ((Smoke ⇒ Fire) ∨ (Heat ⇒ Fire))
T T T T T T T T
T F F F F T T T
F T F F T F T T
F F T F T T T T
T F F F F T T T
F F T F T T T T
F T F F T F T T
F F F F T T T T

f. (Smoke ⇒ Fire) ⇒ ((Smoke ∧ Heat) ⇒ Fire)

Smoke Heat Fire (Smoke ⇒ Fire) (Smoke ∧ Heat) ((Smoke ∧ Heat) ⇒ Fire) (Smoke ⇒ Fire) ⇒ ((Smoke ∧ Heat) ⇒ Fire)
T T T T T T T
T F F F F T T
F T F T F T T
F F T T F T T
T F F F F T T
F F T T F T T
F T F T F T T
F F F T F T T

g. Big ∨ Dumb ∨ (Big ⇒ Dumb)

Big Dumb (Big ⇒ Dumb) Big ∨ Dumb ∨ (Big ⇒ Dumb)
T T T T
F T T T
T F F T
F F T T

h. (Big ∧ Dumb) ∨ ¬Dumb

Big Dumb ¬Dumb (Big ∧ Dumb) (Big ∧ Dumb) ∨ ¬Dumb
T T F T T
F T F F F
T F T F T
F F T F T

Represent the following sentences in propositional logic.

Can you use truth table to determine whether or not the unicorn is mythical? What about magical? Horned?

If the unicorn is mythical, then it is immortal, but if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or a mammal, then it is horned. The unicorn is magical if it is horned.

x: the unicorn is mythical

¬y: the unicorn is immortal

¬x: the unicorn is not mythical

y: the unicorn is a mortal

r: the unicorn is a mammal

z: he unicorn is horned

o: The unicorn is magical

If the unicorn is mythical, then it is immortal x ⇒ ¬y

but if it is not mythical, then it is a mortal mammal ¬x ⇒ y ∧ r

If the unicorn is either immortal or a mammal, then it is horned ¬y ∨ r ⇒ z

The unicorn is magical if it is horned z ⇒ o

This 5 variables, means 2^5 = 32 means there will be a complication of T and F, so I need to do binary instead of, in order to make the work easier

T means 1, F means 0, the truth table in binary shows below:

00000

00001

00010

00011

=4

00100

00101

00110

00111

=4

01000

01001

01010

01011

01100

01101

01110

01111

= 8

10000

10001

10010

10011

10100

10101

10110

10111

11000

11001

11010

11011

11100

11101

11110

11111

=16

= 4 + 4 + 8 + 16 = 16 + 16 = 32

x y z r o ¬x ¬y x ⇒ y ¬x ⇒ z y ∨ z y ∨ z ⇒ r r ⇒ o
F F F F F T T T F F T T
F F F F T T T T F F T T
F F F T F T T T F F T F
F F F T T T T T F F T T
F F T F F T T T T T F T
F F T F T T T T T T F T
F F T T F T T T T T T F
F F T T T T T T T T T T
F T F F F T F T F T F T
F T F F T T F T F T F T
F T F T F T F T F T T F
F T F T T T F T F T T T
F T T F F T F T T T F T
F T T F T T F T T T F T
F T T T F T F T T T T F
F T T T T T F T T T T T
T F F F F F T F T F T T
T F F F T F T F T F T T
T F F T F F T F T F T F
T F F T T F T F T F T T
T F T F F F T F T T F T
T F T F T F T F T T F T
T F T T F F T F T T T F
T F T T T F T F T T T T
T T F F F F F T T F T T
T T F F T F F T T F T T
T T F T F F F T T F T F
T T F T T F F T T F T T
T T T F F F F T T T F T
T T T F T F F T T T F T
T T T T F F F T T T T F
T T T T T F F T T T T T

Logical Equivalence

a. For each of the following, find a satisfying truth assignment, (values of the propositions which make the formula true), if any exists.

  1. ((a⇒ ¬b)∧a)
  2. (((a⇒c) ⇒ ¬b)∧(a∨b))
  3. (a⇒ ¬b)∧a)

(¬a v ¬b) ∧ a)

((a ∧ ¬a) v (a ∧ ¬b))

False v (a ∧ ¬b)

Means that:

a = T

b = F

  1. (((a⇒c) ⇒ ¬b)∧(a∨b))

(a⇒c) = (¬a ∨ c)

((a⇒c) ⇒ ¬b) = ((¬a ∨ c) ⇒ ¬b) = (¬(¬a ∨ c) ∨ ¬b) = (a ∧ ¬c) ∨ ¬b

(((a⇒c) ⇒ ¬b)∧(a∨b)) = ((a ∧ ¬c) ∨ ¬b) ∧ (a∨b)

Referring from the 1.

a = T

b = F

((a ∧ ¬c) ∨ ¬b) ∧ (a∨b)

(( T ∧ ¬c) ∨ T) ∧ (T∨F)

We need to replace c = F, so:

(( T ∧ ¬F) ∨ T) ∧ (T∨F)

((T ∧ T) ∨ T) ∧ (T∨F)

(T ∧ T) ∨ T) = T

(T∨F) = T

=> T ∧ T = T

So c = F

b. For each of the following, find a falsifying truth assignment, (values of the propositions which make the formula false), if any exists.

  1. ((a⇒ ¬b)∨a)

(a⇒ ¬b)∨a)

(¬a ∨ ¬b) ∨ a)

¬a ∨ ¬b v a

(¬a v a) v ¬b

True v ¬b ( tautology mean always True)

Means there is no falsifying assignment

  1. ((¬b⇒ (a⇒c))∨(a∧b))

(a⇒c) = (¬a ∨ c)

(¬b⇒ (¬a ∨ c)) = b ∨ (¬a ∨ c) = b ∨ ¬a ∨ c

(b ∨ ¬a ∨ c) ∨ (a∧b)

when F v F, means

(b ∨ ¬a ∨ c) = F => b;c = False, a=True

(a∧b) = F => a = True, b = False