Functions in math

Functions in math
Photo by Antoine Dautry / Unsplash

y = f(x), Domain: D

$$ f(x) = \sqrt{x+2}, D = x + 2 \ge 0 \leftrightarrow x \ge -2 $$

D(f) = [2, inf]

Polynomials

$$ p(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_1 x + a_0 $$

For example

Type of Polynomials Degree Definition Example
Constant 0 simply a constant term. $f(x) = 5$  
Linear 1 represents a straight line $ f(x) = 2x - 3$  
Quadratic 2 represents a parabola $f(x) = x^2 + 4x + 1$
Cubic 3 $f(x) = 3x^3 - 2x^2 + x + 7$
Quartic 4 $f(x) = x^4 + 7x^3 - 2x + 1$
Quintic 5 $f(x) = 2x^5 - x^3 + 4x - 9$

Rational functions

If $p(x)$and $q(x)$ are polynomial functions, there is the form of rational function r(x): $r(x) = \frac{p(x)}{q(x)}$

The domain of $r(x)$ is $\mathcal{D} = \{x \mid q(x) \neq 0\}$

Example

Simple Rational Function

  • $$ r(x) = \frac{x + 2}{x - 3} $$

p(x) = x + 2 (a linear polynomial)

q(x) = x - 3 (another linear polynomial)

Domain: All real numbers except x = 3 (since q(3) = 0), also called: $\mathcal{D} = \{x \in R \mid x \neq 3\}$

  • $$ r(x) = \frac{x^2 - 4}{x^2 + 2x + 1} $$

p(x) = $x^2 - 4$ (a quadratic polynomial)

q(x) = $x^2 + 2x + 1$ (another quadratic polynomial)

Domain: All real numbers except x = -1 (since q(-1) = 0), also called:$\mathcal{D} = \{x \in R \mid x \neq -1\}$

  • $$ r(x) = \frac{2x^3 - 5x + 1}{x^3 - 8} $$

p(x) = 2x^3 - 5x + 1 (a cubic polynomial)

q(x) = x^3 - 8 (another cubic polynomial)

Domain: All real numbers except x = 2 (since q(2) = 0), also called: $\mathcal{D} = \{x \in R \mid x \neq 2\}$

Absolute value function

This function $f(x) = \lvert x \rvert$ is defined by the rule of two-part:

$$ f(x) = \lvert x \rvert = \begin{cases} x & \text{if } x \ge 0, \\ -x & \text{if } x < 0 \end{cases} $$

Domain D = R, the range is $\{x \mid x \ge 0\} = [0, \infty)$

Examples

f(3) = |3| = 3 (Because 3 is positive, the absolute value is always 3)

f(-3) = |-3| = 3 (Because -3 is negative, the absolute value changes to its positive counterpart, 3)

f(0) = |0| = 0 (The absolute value of 0 is 0)

Piecewise functions

This allow to change intervals, like $\le \text to <$, but to make sure that should not overlap.

$$ f(x) = \begin{cases} x & \text{if } x \le 0, \\ -x & \text{if } 0 < x \le 1, \\ 1 & \text{if } x > 1 \end{cases} $$

Examples

f(x) =

f(-2), $-2 \le 0 $, apply the first part of the definition: f(-2) = -2

f(0.5), $0 < 0.5 \le 1$, apply the second part of the definition: f(0.5) = -0.5

f(1), $0 < 1 \le 1$, apply the second part of the definition: f(1) = 1

f(3), $3 > 1$, apply the third part of the definition f(3) = 3

Another one with piecewise functions

2x if x < 0

3x if $0 \le x < 2$

4x if $2 \le x < 4$

5x if $x \ge 4$


f(x) =

f(-2), $-2 \le 0 $, apply the first part of the definition: f(-2) = $-2 * 2 = -4$

f(0.5), $0 < 0.5 \le 2$, apply the second part of the definition: f(0.5) = $0.5 * 3 = 1.5$

f(1), $0 \le 1 < 2$, apply the second part of the definition: f(1) = $1 * 4 = 4$

f(3), $2 \le 3 < 4$, apply the third part of the definition f(3) = $3 * 4 = 12$

f(4), $4 \ge 4$, apply the third part of the definition f(3) = $4*5=20$

Another one (not N and N)

f(x) =

$\frac{-17}{4}x$ if x < 0

0.5x if 0 ≤ x < 2

2x if 2 ≤ x < 4

$\frac{17}{4}x$ if x ≥ 4


f(x) =

f(-2), $-2 \le 0 $, apply the first part of the definition: f(-2) = $-2 * \frac{17}{4} = -\frac{17}{2}$

f(0.5), $0 \le 0.5 < 2$, apply the second part of the definition: f(0.5) = $0.5 * 0.5 = 0.25$

f(1), $0 \le 0.5 < 2$, apply the second part of the definition: f(1) = $1 * 0.5 = 0.5$

f(3), $2 \le 3 < 4$, apply the third part of the definition f(3) = $3 * 2 = 6$

f(4), $4 \ge 4$, apply the third part of the definition f(3) = $4*\frac{17}{4}=17$

Calculate domains of r(x), where r(x) =

$$ \frac{3x^4 - 5x^2 + 3x - 1}{x^3 - x} $$

We check on denominator $x^3 - x \neq 0$

$$ x(x^2 - 1) \neq 0 $$ $$ \begin{cases} x = 0 \\ x^2 - 1 = 0 \end{cases} $$ $$ Two \space conditions => \begin{cases} x = 0 \\ x^2 = \pm1 \end{cases} $$

$D(r) = (-\infty, -1) \space \cup \space (0, 1) \space \cup \space (1, +\infty)$ OR $D(r) = R \space \setminus \space \{-1, 0, 1\}$

Draw the graph of functions

$$ f(x) = x - |x| $$

Case 1: if $x \ge 0$

  • So, the absolute value of x is $|x| = x$
  • Substituting into the function: x - x = 0

Case 2: if $x < 0$

  • So, the absolute value of x is $|x| = -x$
  • Substituting into the function: x - (-x) = 2x

So, the function, therefore, will shows as pre-wise function:

$$ f(x) = \begin{cases} 0 & \text{if } x \ge 0, \\ 2x & \text{if } x < 0 \end{cases} $$

Generated from ChatGPT, as you can see if x > 0, which means y also = 0. By contrast the rising of x and y same as f(x) = 2x. Take an example 2 \-5 (x) = -10 (f(x))
Generated from ChatGPT, as you can see if x > 0, which means y also = 0. By contrast the rising of x and y same as f(x) = 2x. Take an example 2 -5 (x) = -10 (f(x))

Build a new function from old functions

Name variable formula
the sum $f + q$ $(f + q)(x) = f(x) + g(x)$
difference $f - q$ $(f-g)(x) = f(x) - g(x)$
product $f \cdot g$ $(f \cdot g)(x) = f(x)g(x)$
quotient $\frac{f}{g}$ $\frac{f}{g} (x) = \frac{f(x)}{g(x)}$

Definition: Composition of functions:

Given any of the two functions in f and g: $(f \circ g)(x) = f(g(x)) \space and \space (g \circ f)(x) = g(f(x))$

f(g(x)) is g(x) is nested at f(x)

g(f(x)) is vice versa above

The composition $f \circ g $ has domain $\{ x \in \mathcal{D}(g) \mid g(x) \in \mathcal{D}(f) \}$

Example

We have f(x) = 2x, g(x) = $x^2$

Make the table from new functions:

Name variable new functions
the sum $f + q$ $(f + q)(x) = 2x + x^2$
difference $f - q$ $(f-g)(x) = 2x - x^2$
product $f \cdot g$ $(f \cdot g)(x) = 2x \cdot x^2 = 2x^3$
quotient $\frac{f}{g} $ $\frac{f}{g} (x) = \frac{2x}{x^2} = \frac{2}{x}$

Composition of functions:

Function New function
$(f \circ g)(x) = f(g(x))$ $f(x) = 2(x^2) = 2x^2$
$(g \circ f)(x) = g(f(x))$ $f(x) = (2x)^2 = 4x^2$

Example: Build a new function from old function

Example: $f(x) = \sqrt{x + 1}, \ g(x) = \sqrt{5 - x}$

$$ D(f) = [-1, +\infty); \space D(g) = [5, +\infty) $$

Make the table to calculate $f(x) + g(x), f(x) - g(x), f(x) \circ g(x), \frac{f(x)}{g(x)}$and their domains

Domains:

$\sqrt{x + 1}$, we need to put at condition at: $x + 1 \ge 0 <=> x \ge -1$, means that x can take any value at: $[-1, +\infty)$

$\sqrt{5 - x}$, we need to put at condition at: $5 -x \ge 0 <=> x \le 5$

means that x can take any value at: $(-\infty, 5]$

Combined domain:

f(x) and g(x) is the intersection of D(f) and D(g), which is:

$$ D(f) \cap D(g) = [-1, 5] $$

Function New function Domain
$f(x) + g(x)$ $(\sqrt{x + 1}) + (\sqrt{5 - x})$ $[-1, 5]$
$f(x) - g(x)$ $(\sqrt{x + 1}) - (\sqrt{5 - x})$ $[-1, 5]$
$f(x) \circ g(x)$ $(\sqrt{x + 1}) \circ (\sqrt{5 - x})$ $[-1, 5]$
$\frac{f(x)}{g(x)}$ $\frac{\sqrt{x + 1}}{\sqrt{5 - x}}$ $[-1, 5)$

Composition:

Function New function Domain
$(f \circ g)(x) = f(g(x))$ $f(x) = \sqrt{\sqrt{5 - x} + 1}$ $\sqrt{5 - x} + 1 \ge 0 \\ \Leftrightarrow x \le 5$
$(g \circ f)(x) = g(f(x))$ $f(x) = \sqrt{5 - \sqrt{x + 1}}$ $5 - \sqrt{x + 1} \ge 0 \Leftrightarrow x \in [-1, 24]$

Another example on build a new function from old functions

$f(x) = x^2, g(x) = \sqrt{x+2}$, find $(f \circ g)(x)$, and find $(g \circ f)(x)$, and domains

$$ (f \circ g)(x) = f(g(x)) = (\sqrt{x+2})^2 = x + 2 ; D(f \circ g) = [-2, +\infty) $$ $$ (g \circ f)(x) = g(f(x)) = \sqrt{x^2 + 2}; D(g \circ f) = R $$

More example….

$f(x) = \frac{1}{x}, g(x) = sin(x)$, find $(f \circ g)(x)$and find $(g \circ f)(x)$, and domains

$$ (f \circ g)(x) = f(g(x)) = \frac{1}{\sin(x)}; \ D(f \circ g) = \mathbb{R} \setminus \{ \ldots, -4\pi, -2\pi, 0, 2\pi, 4\pi, \ldots \} $$ $$ (g \circ f)(x) = g(f(x)) = sin(\frac{1}{x}); D(g \circ f) = \mathbb{R} \setminus \{0\} $$

Find inverse of

$f(x) = 2x + 4$, and $f(x) = \frac{7x+3}{x-1}$

Replace $f(x) \implies y$

  1. For $f(x) = 2x + 4 \leftrightarrow y = 2x +4 \leftrightarrow x = 2y +4 \leftrightarrow 2y = x - 4 $

$$ \leftrightarrow y = \frac{x-4}{2} \leftrightarrow f^{-1}(x) = \frac{x-4}{2} $$

  1. For $f(x) = \frac{7x+3}{x-1} \leftrightarrow y = \frac{7x+3}{x-1} \leftrightarrow x = \frac{7y+3}{y-1} \leftrightarrow x(y-1) = 7y+3 $

$$ \leftrightarrow xy - x = 7y + 3 \leftrightarrow xy - 7y = x +3 \leftrightarrow y(x - 7) = x +3 \leftrightarrow y = \frac{x + 3} {x - 7} \leftrightarrow f^{-1}(x) = \frac{x + 3} {x - 7} $$